The http://openscience.network project is more than a #federated digital space. It's a network to collectively discover, produce and participate to the most relevant #openscience discussions on the fediverse and beyond.

In the public homepage, the editorial team pins posts for anyone to read - as an alternative to the most recent activities (often meaningless to the general audience )

Imagine every university, collective and lab owning their federated digital space and radically transforming their usual social networking presence in powerful ways:

- Curate and organize discussions in topics, moving beyond feeds and toward structured journals composed of federated discussions and links

- Discover and read papers directly from the scientist social profile


- Collaborate on new ideas in the open, instead of being siloed inside centralized platforms, publish papers from the fediverse

And this is only the beginning! Support us building the next infrastructure for open science!

Atmospheric Measurement Techniques
Importance of size representation and morphology in modelling optical properties of black carbon: comparison between laboratory measurements and model simulations
Baseerat Romshoo, Mira Pöhlker, Alfred Wiedensohler, Sascha Pfeifer, Jorge Saturno, Andreas Nowak, Krzysztof Ciupek, Paul Quincey, Konstantina Vasilatou, Michaela N. Ess, Maria Gini, Konstantinos Eleftheriadis, Chris Robins, François Gaie-Levrel, Thomas Müller
journal-article
December 6, 2022

Abstract. Black carbon (BC) from incomplete combustion of biomass or fossil fuels is the strongest absorbing aerosol component in the atmosphere. Optical properties of BC are essential in climate models for quantification of their impact on radiative forcing. The global climate models, however, consider BC to be spherical particles, which causes uncertainties in their optical properties. Based on this, an increasing number of model-based studies provide databases and parameterization schemes for the optical properties of BC, using more realistic fractal aggregate morphologies. In this study, the reliability of the different modelling techniques of BC was investigated by comparing them to laboratory measurements. The modelling techniques were examined for bare BC particles in the first step and for BC particles with organic material in the second step. A total of six morphological representations of BC particles were compared, three each for spherical and fractal aggregate morphologies. In general, the aggregate representation performed well for modelling the particle light absorption coefficient σabs, single-scattering albedo SSA, and mass absorption cross-section MACBC for laboratory-generated BC particles with volume mean mobility diameters dp,V larger than 100 nm. However, for modelling Ångström absorption exponent AAE, it was difficult to suggest a method due to size dependence, although the spherical assumption was in better agreement in some cases. The BC fractal aggregates are usually modelled using monodispersed particles, since their optical simulations are computationally expensive. In such studies, the modelled optical properties showed a 25 % uncertainty in using the monodisperse size method. It is shown that using the polydisperse size distribution in combination with fractal aggregate morphology reduces the uncertainty in measured σabs to 10 % for particles with dp,V between 60–160 nm.

Furthermore, the sensitivities of the BC optical properties to the various model input parameters such as the real and imaginary parts of the refractive index (mre and mim), the fractal dimension (Df), and the primary particle radius (app) of an aggregate were investigated. When the BC particle is small and rather fresh, the change in the Df had relatively little effect on the optical properties. There was, however, a significant relationship between app and the particle light scattering, which increased by a factor of up to 6 with increasing total particle size. The modelled optical properties of BC are well aligned with laboratory-measured values when the following assumptions are used in the fractal aggregate representation: mre between 1.6 and 2, mim between 0.50 and 1, Df from 1.7 to 1.9, and app between 10 and 14 nm. Overall, this study provides experimental support for emphasizing the importance of an appropriate size representation (polydisperse size method) and an appropriate morphological representation for optical modelling and parameterization scheme development of BC.

Atmospheric Chemistry and Physics
Occurrence and growth of sub-50 nm aerosol particles in the Amazonian boundary layer
Marco A. Franco, Florian Ditas, Leslie A. Kremper, Luiz A. T. Machado, Meinrat O. Andreae, Alessandro Araújo, Henrique M. J. Barbosa, Joel F. de Brito, Samara Carbone, Bruna A. Holanda, Fernando G. Morais, Janaína P. Nascimento, Mira L. Pöhlker, Luciana V. Rizzo, Marta Sá, Jorge Saturno, David Walter, Stefan Wolff, Ulrich Pöschl, Paulo Artaxo, Christopher Pöhlker
journal-article
March 16, 2022

Abstract. New particle formation (NPF), referring to the nucleation of molecular clusters and their subsequent growth into the cloud condensation nuclei (CCN) size range, is a globally significant and climate-relevant source of atmospheric aerosols. Classical NPF exhibiting continuous growth from a few nanometers to the Aitken mode around 60–70 nm is widely observed in the planetary boundary layer (PBL) around the world but not in central Amazonia. Here, classical NPF events are rarely observed within the PBL, but instead, NPF begins in the upper troposphere (UT), followed by downdraft injection of sub-50 nm (CN<50) particles into the PBL and their subsequent growth. Central aspects of our understanding of these processes in the Amazon have remained enigmatic, however. Based on more than 6 years of aerosol and meteorological data from the Amazon Tall Tower Observatory (ATTO; February 2014 to September 2020), we analyzed the diurnal and seasonal patterns as well as meteorological conditions during 254 of such Amazonian growth events on 217 event days, which show a sudden occurrence of particles between 10 and 50 nm in the PBL, followed by their growth to CCN sizes. The occurrence of events was significantly higher during the wet season, with 88 % of all events from January to June, than during the dry season, with 12 % from July to December, probably due to differences in the condensation sink (CS), atmospheric aerosol load, and meteorological conditions. Across all events, a median growth rate (GR) of 5.2 nm h−1 and a median CS of 1.1 × 10−3 s−1 were observed. The growth events were more frequent during the daytime (74 %) and showed higher GR (5.9 nm h−1) compared to nighttime events (4.0 nm h−1), emphasizing the role of photochemistry and PBL evolution in particle growth. About 70 % of the events showed a negative anomaly of the equivalent potential temperature (Δθe) – as a marker for downdrafts – and a low satellite brightness temperature (Tir) – as a marker for deep convective clouds – in good agreement with particle injection from the UT in the course of strong convective activity. About 30 % of the events, however, occurred in the absence of deep convection, partly under clear-sky conditions, and with a positive Δθe anomaly. Therefore, these events do not appear to be related to downdraft transport and suggest the existence of other currently unknown sources of sub-50 nm particles.

Zenodo
Summary report on the current state-of-the-art of Exhaust Flow Meter (EFM) calibration procedures, including (i) its associated uncertainty for relevant carrier gases and (ii) its relation to on-road emission tests
Menne Schakel, Wouter Stiphout, Mitra Zabihigivi, Rasmus Pettinen, Jorge Saturno
report
June 8, 2022
Deliverable 6 of the 19ENV09 EMPIR project MetroPEMS "Summary report on the current state-of-the-art of Exhaust Flow Meter (EFM) calibration procedures, including (i) its associated uncertainty for relevant carrier gases and (ii) its relation to on-road emission tests"
Atmosphere
MesSBAR—Multicopter and Instrumentation for Air Quality Research
Lutz Bretschneider, Andreas Schlerf, Anja Baum, Henning Bohlius, Marcel Buchholz, Sebastian Düsing, Volker Ebert, Hassnae Erraji, Paul Frost, Ralf Käthner, Thomas Krüger, Anne Caroline Lange, Marcel Langner, Andreas Nowak, Falk Pätzold, Julian Rüdiger, Jorge Saturno, Hendrik Scholz, Tobias Schuldt, Rickmar Seldschopf, Andre Sobotta, Ralf Tillmann, Birgit Wehner, Christian Wesolek, Katharina Wolf, Astrid Lampert
#UAS #ozone #aerosol #NOx #black carbon #drone #air quality #multicopter
Air quality measurements usually consist of ground-based instrumentation at fixed locations. However, vertical profiles of pollutants are of interest for understanding processes, distribution, dilution and concentration. Therefore, a multicopter system has been developed to investigate the vertical distribution of the concentration of aerosol particles, black carbon, ozone, nitrogen oxides (NOx) and carbon monoxide and the meteorological parameters of temperature and humidity. This article presents the requirements by different users, the setup of the quadrocopter system, the instrumentation and the results of first applications. The vertical distribution of particulate matter next to a highway was strongly related to atmospheric stratification, with different concentrations below and above the temperature inversion present in the morning. After the qualification phase described in this article, two identically equipped multicopters will be used upwind and downwind of line or diffuse sources such as highways or urban areas to quantify the influence of their emissions on the local air quality.
Atmospheric Chemistry and Physics
Optical properties of coated black carbon aggregates: numerical simulations, radiative forcing estimates, and size-resolved parameterization scheme
Baseerat Romshoo, Thomas Müller, Sascha Pfeifer, Jorge Saturno, Andreas Nowak, Krzysztof Ciupek, Paul Quincey, Alfred Wiedensohler
journal-article
September 2, 2021

Abstract. The formation of black carbon fractal aggregates (BCFAs) from combustion and subsequent ageing involves several stages resulting in modifications of particle size, morphology, and composition over time. To understand and quantify how each of these modifications influences the BC radiative forcing, the optical properties of BCFAs are modelled. Owing to the high computational time involved in numerical modelling, there are some gaps in terms of data coverage and knowledge regarding how optical properties of coated BCFAs vary over the range of different factors (size, shape, and composition). This investigation bridged those gaps by following a state-of-the-art description scheme of BCFAs based on morphology, composition, and wavelength. The BCFA optical properties were investigated as a function of the radius of the primary particle (ao), fractal dimension (Df), fraction of organics (forganics), wavelength (λ), and mobility diameter (Dmob). The optical properties are calculated using the multiple-sphere T-matrix (MSTM) method. For the first time, the modelled optical properties of BC are expressed in terms of mobility diameter (Dmob), making the results more relevant and relatable for ambient and laboratory BC studies. Amongst size, morphology, and composition, all the optical properties showed the highest variability with changing size. The cross sections varied from 0.0001 to 0.1 µm2 for BCFA Dmob ranging from 24 to 810 nm. It has been shown that MACBC and single-scattering albedo (SSA) are sensitive to morphology, especially for larger particles with Dmob> 100 nm. Therefore, while using the simplified core–shell representation of BC in global models, the influence of morphology on radiative forcing estimations might not be adequately considered. The Ångström absorption exponent (AAE) varied from 1.06 up to 3.6 and increased with the fraction of organics (forganics). Measurement results of AAE  1 are often misinterpreted as biomass burning aerosol, it was observed that the AAE of purely black carbon particles can be  1 in the case of larger BC particles. The values of the absorption enhancement factor (Eλ) via coating were found to be between 1.01 and 3.28 in the visible spectrum. The Eλ was derived from Mie calculations for coated volume equivalent spheres and from MSTM for coated BCFAs. Mie-calculated enhancement factors were found to be larger by a factor of 1.1 to 1.5 than their corresponding values calculated from the MSTM method. It is shown that radiative forcings are highly sensitive to modifications in morphology and composition. The black carbon radiative forcing ΔFTOA (W m−2) decreases up to 61 % as the BCFA becomes more compact, indicating that global model calculations should account for changes in morphology. A decrease of more than 50 % in ΔFTOA was observed as the organic content of the particle increased up to 90 %. The changes in the ageing factors (composition and morphology) in tandem result in an overall decrease in the ΔFTOA. A parameterization scheme for optical properties of BC fractal aggregates was developed, which is applicable for modelling, ambient, and laboratory-based BC studies. The parameterization scheme for the cross sections (extinction, absorption, and scattering), single-scattering albedo (SSA), and asymmetry parameter (g) of pure and coated BCFAs as a function of Dmob were derived from tabulated results of the MSTM method. Spanning an extensive parameter space, the developed parameterization scheme showed promisingly high accuracy up to 98 % for the cross sections, 97 % for single-scattering albedos (SSAs), and 82 % for the asymmetry parameter (g).

Atmospheric Chemistry and Physics
Long-term deposition and condensation ice-nucleating particle measurements from four stations across the globe
Jann Schrod, Erik S. Thomson, Daniel Weber, Jens Kossmann, Christopher Pöhlker, Jorge Saturno, Florian Ditas, Paulo Artaxo, Valérie Clouard, Jean-Marie Saurel, Martin Ebert, Joachim Curtius, Heinz G. Bingemer
journal-article
December 22, 2020

Abstract. Ice particle activation and evolution have important atmospheric implications for cloud formation, initiation of precipitation and radiative interactions. The initial formation of atmospheric ice by heterogeneous ice nucleation requires the presence of a nucleating seed, an ice-nucleating particle (INP), to facilitate its first emergence. Unfortunately, only a few long-term measurements of INPs exist, and as a result, knowledge about geographic and seasonal variations of INP concentrations is sparse. Here we present data from nearly 2 years of INP measurements from four stations in different regions of the world: the Amazon (Brazil), the Caribbean (Martinique), central Europe (Germany) and the Arctic (Svalbard). The sites feature diverse geographical climates and ecosystems that are associated with dissimilar transport patterns, aerosol characteristics and levels of anthropogenic impact (ranging from near pristine to mostly rural). Interestingly, observed INP concentrations, which represent measurements in the deposition and condensation freezing modes, do not differ greatly from site to site but usually fall well within the same order of magnitude. Moreover, short-term variability overwhelms all long-term trends and/or seasonality in the INP concentration at all locations. An analysis of the frequency distributions of INP concentrations suggests that INPs tend to be well mixed and reflective of large-scale air mass movements. No universal physical or chemical parameter could be identified to be a causal link driving INP climatology, highlighting the complex nature of the ice nucleation process. Amazonian INP concentrations were mostly unaffected by the biomass burning season, even though aerosol concentrations increase by a factor of 10 from the wet to dry season. Caribbean INPs were positively correlated to parameters related to transported mineral dust, which is known to increase during the Northern Hemisphere summer. A wind sector analysis revealed the absence of an anthropogenic impact on average INP concentrations at the site in central Europe. Likewise, no Arctic haze influence was observed on INPs at the Arctic site, where low concentrations were generally measured. We consider the collected data to be a unique resource for the community that illustrates some of the challenges and knowledge gaps of the field in general, while specifically highlighting the need for more long-term observations of INPs worldwide.

Atmospheric Chemistry and Physics
Influx of African biomass burning aerosol during the Amazonian dry season through layered transatlantic transport of black carbon-rich smoke
Bruna A. Holanda, Mira L. Pöhlker, David Walter, Jorge Saturno, Matthias Sörgel, Jeannine Ditas, Florian Ditas, Christiane Schulz, Marco Aurélio Franco, Qiaoqiao Wang, Tobias Donth, Paulo Artaxo, Henrique M. J. Barbosa, Stephan Borrmann, Ramon Braga, Joel Brito, Yafang Cheng, Maximilian Dollner, Johannes W. Kaiser, Thomas Klimach, Christoph Knote, Ovid O. Krüger, Daniel Fütterer, Jošt V. Lavrič, Nan Ma, Luiz A. T. Machado, Jing Ming, Fernando G. Morais, Hauke Paulsen, Daniel Sauer, Hans Schlager, Johannes Schneider, Hang Su, Bernadett Weinzierl, Adrian Walser, Manfred Wendisch, Helmut Ziereis, Martin Zöger, Ulrich Pöschl, Meinrat O. Andreae, Christopher Pöhlker
journal-article
April 24, 2020

Abstract. Black carbon (BC) aerosols influence the Earth's atmosphere and climate, but their microphysical properties, spatiotemporal distribution, and long-range transport are not well constrained. This study presents airborne observations of the transatlantic transport of BC-rich African biomass burning (BB) smoke into the Amazon Basin using a Single Particle Soot Photometer (SP2) as well as several complementary techniques. We base our results on observations of aerosols and trace gases off the Brazilian coast onboard the HALO (High Altitude and LOng range) research aircraft during the ACRIDICON-CHUVA campaign in September 2014.

During flight AC19 over land and ocean at the northeastern coastline of the Amazon Basin, we observed a BC-rich layer at ∼3.5 km altitude with a vertical extension of ∼0.3 km. Backward trajectories suggest that fires in African grasslands, savannas, and shrublands were the main source of this pollution layer and that the observed BB smoke had undergone more than 10 d of atmospheric transport and aging over the South Atlantic before reaching the Amazon Basin. The aged smoke is characterized by a dominant accumulation mode, centered at about 130 nm, with a particle concentration of Nacc=850±330 cm−3. The rBC particles account for ∼15 % of the submicrometer aerosol mass and ∼40 % of the total aerosol number concentration. This corresponds to a mass concentration range from 0.5 to 2 µg m−3 (1st to 99th percentiles) and a number concentration range from 90 to 530 cm−3. Along with rBC, high cCO (150±30 ppb) and cO3 (56±9 ppb) mixing ratios support the biomass burning origin and pronounced photochemical aging of this layer. Upon reaching the Amazon Basin, it started to broaden and to subside, due to convective mixing and entrainment of the BB aerosol into the boundary layer. Satellite observations show that the transatlantic transport of pollution layers is a frequently occurring process, seasonally peaking in August/September.

By analyzing the aircraft observations together with the long-term data from the Amazon Tall Tower Observatory (ATTO), we found that the transatlantic transport of African BB smoke layers has a strong impact on the northern and central Amazonian aerosol population during the BB-influenced season (July to December). In fact, the early BB season (July to September) in this part of the Amazon appears to be dominated by African smoke, whereas the later BB season (October to December) appears to be dominated by South American fires. This dichotomy is reflected in pronounced changes in aerosol optical properties such as the single scattering albedo (increasing from 0.85 in August to 0.90 in November) and the BC-to-CO enhancement ratio (decreasing from 11 to 6 ng m−3 ppb−1). Our results suggest that, despite the high fraction of BC particles, the African BB aerosol acts as efficient cloud condensation nuclei (CCN), with potentially important implications for aerosol–cloud interactions and the hydrological cycle in the Amazon.

Environmental Research
Spread of SARS-CoV-2 through Latin America and the Caribbean region: A look from its economic conditions, climate and air pollution indicators
Tomás R. Bolaño-Ortiz, Yiniva Camargo-Caicedo, Salvador Enrique Puliafito, María Florencia Ruggeri, Sindy Bolaño-Diaz, Romina Pascual-Flores, Jorge Saturno, Sergio Ibarra-Espinosa, Olga L. Mayol-Bracero, Elvis Torres-Delgado, Francisco Cereceda-Balic
We have evaluated the spread of SARS-CoV-2 through Latin America and the Caribbean (LAC) region by means of a correlation between climate and air pollution indicators, namely, average temperature, minimum temperature, maximum temperature, rainfall, average relative humidity, wind speed, and air pollution indicators PM10, PM2.5, and NO2 with the COVID-19 daily new cases and deaths. The study focuses in the following LAC cities: Mexico City (Mexico), Santo Domingo (Dominican Republic), San Juan (Puerto Rico), Bogotá (Colombia), Guayaquil (Ecuador), Manaus (Brazil), Lima (Perú), Santiago (Chile), São Paulo (Brazil) and Buenos Aires (Argentina). The results show that average temperature, minimum temperature, and air quality were significantly associated with the spread of COVID-19 in LAC. Additionally, humidity, wind speed and rainfall showed a significant relationship with daily cases, total cases and mortality for various cities. Income inequality and poverty levels were also considered as a variable for qualitative analysis. Our findings suggest that and income inequality and poverty levels in the cities analyzed were related to the spread of COVID-19 positive and negative, respectively. These results might help decision-makers to design future strategies to tackle the spread of COVID-19 in LAC and around the world.
Atmospheric Chemistry and Physics
Land cover and its transformation in the backward trajectory footprint region of the Amazon Tall Tower Observatory
Christopher Pöhlker, David Walter, Hauke Paulsen, Tobias Könemann, Emilio Rodríguez-Caballero, Daniel Moran-Zuloaga, Joel Brito, Samara Carbone, Céline Degrendele, Viviane R. Després, Florian Ditas, Bruna A. Holanda, Johannes W. Kaiser, Gerhard Lammel, Jošt V. Lavrič, Jing Ming, Daniel Pickersgill, Mira L. Pöhlker, Maria Praß, Nina Löbs, Jorge Saturno, Matthias Sörgel, Qiaoqiao Wang, Bettina Weber, Stefan Wolff, Paulo Artaxo, Ulrich Pöschl, Meinrat O. Andreae
journal-article
July 3, 2019

Abstract. The Amazon rain forest experiences the combined pressures from human-made deforestation and progressing climate change, causing severe and potentially disruptive perturbations of the ecosystem's integrity and stability. To intensify research on critical aspects of Amazonian biosphere–atmosphere exchange, the Amazon Tall Tower Observatory (ATTO) has been established in the central Amazon Basin. Here we present a multi-year analysis of backward trajectories to derive an effective footprint region of the observatory, which spans large parts of the particularly vulnerable eastern basin. Further, we characterize geospatial properties of the footprint regions, such as climatic conditions, distribution of ecoregions, land cover categories, deforestation dynamics, agricultural expansion, fire regimes, infrastructural development, protected areas, and future deforestation scenarios. This study is meant to be a resource and reference work, helping to embed the ATTO observations into the larger context of human-caused transformations of Amazonia. We conclude that the chances to observe an unperturbed rain forest–atmosphere exchange at the ATTO site will likely decrease in the future, whereas the atmospheric signals from human-made and climate-change-related forest perturbations will increase in frequency and intensity.