Discussion
Loading...

Discussion

Log in
  • About
  • Code of conduct
  • Privacy
  • Users
  • Instances
  • About Bonfire
Nicolas Fressengeas @fresseng
activity timestamp 5 years ago
Effect of Interface Properties on the Electrical Characteristics of InGaN-based Multijunction Solar Cell
The InGaN ternary alloy has the potentiality to achieve high efficiency solar cells: tunable bandgap in the whole solar spectrum, high absorption coefficient, high stability and radiation tolerance. These very promising characteristics make InGaN potentially ideal for designing and developing next-generation high-efficiency thin films solar cells. However, challenging issues remain to address: (i) the difficulty to elaborate sufficiently thick monocrystalline InGaN layers with a high Indium content; (a) the high defects density and the spontaneous and piezoelectric polarizations; (iii) the p-doping which remains difficult to master. In this report, we use rigorous optimization approach based on state-of-the-art optimization algorithms to investigate the effect of defects and polarization (spontaneous and piezoelectric) on a double junction InGaN solar cell. A better understanding of the mechanisms involved in the heterostructure has a crucial impact on the design and elaboration of high efficiency InGaN thin films solar cells which require, in particular, a precise control of the Tunnel Junction elaboration which is still very challenging.
  • Copy link
  • Flag this media
  • Block
Log in

Open Science

We are a network of scientists, developers and organizations building the next generation of digital spaces for open science.

Open Science: About · Code of conduct · Privacy · Users · Instances
Bonfire · 1.0.0-rc.1.5 no JS en
Federation disabled
  • Explore
  • About
  • Members
  • Code of Conduct